
and outer radius, respectively, of a porous wall, m; m, flow rate of coolant, kg/(m.sec); j, 
flow rate of coolant, kg/(m2.sec); cp, heat capacity of the coolant, J/(kg.deg); P, pressure, 
N/m2; P0, Pl, pressure of coolant in front of the porous wall in the cold and hot state, re- 
spectively, N/m2; P2, pressure of the coolant at the outlet from the porous wall, N/m2; lw, 
thermal conductivity of the material of the wall, W/(m.deg); 7, (mcp)/(2~lw); A (for gT0 = 
gT) - (P~ - P~)/(P~ - P~); ~, coefficient of linear expansion, i/deg; E, Young~s modulus, 
kgf/mm2; ~, Poisson ratio; oT(T), yield strength, kgf/mm2; otr, ate, otz, radial, tangen- 
tial, and axial thermal stresses, respectively, kgf/mm 2. 

i. 

2. 

3. 

, 

5. 
6. 
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STRUCTURAL AND MECHANICAL PROPERTIES AND EFFECTIVE PERMEABILITY 

OF FISSURED MATERIALS 

Yu. A. Buevich, S. L. Komarinskii, V. S. Nustrov, 
and V. A. Ustinov 

UDC 532.546 

The article investigates the dependences of porosity and of the permeability 
tensor of an elastic fissured medium on the characteristics of its state of 
stress and the pressure of the permeating liquid. 

Problems of permeation and convective transfer in deformed fissured and fractured-porous 
media are of interest in connection with the opening up of oil, gas condensate, and water de- 
posits belonging to these types of collectors, and also for a number of problems of mining 
thermophysics. The structural method of describing motion in such media is based on the notions 
of continuity submitted in [i], and it has received fairly widespread application (see, e.g., 
[2-5]). Some inaccuracies characteristic of the continuous model in [2-5] were eliminated in 
[6]. In accordance with the model, the initial fractured-porous medium may be regarded as 
superposition of two coexisting porous continua modeling a system of interrelated cracks and 
a system of porous blocks. 

The equations of motion in the mentioned continua contain as parameters fully character- 
izing the averaged properties of the medium: the effective porosity and permeability tensors 
referred to these continua, and also magnitudes describing the exchange of liquid between them. 
In regard to its meaning, the problem of determining the above parameters, which in the solu- 
tion of various problems of permeation have to be regarded as known functions of the state of 
a medium filled with liquid, is completely analogous to the known rheological problem of the 
hydrodynamics of suspensions or the problem of determining the mechanical, thermophysical, and 
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electrophysical properties of heterogeneous materials. However, an important feature of the 
structural and mechanical properties of fractured-porous media is that they very strongly de- 
pend on the pressure of the permeating liquid as well as on the state of stress of the medium, 
in particular, under certain conditions it is possible that the fissures close up and flow 
through them ceases practically completely. This circumstance was apparently taken into ac- 
count for the first time by the condition of smooth closur~ of the walls of fissures suggested 
by Khristianovich in the theory of hydraulic rupture of beus (see [5]); the strong effect of 
the possible closure of fissures on the process of permeation was noted in [7]. A significant 
example of the quantitative description of this effect for steady-state permeation toward a 
borehole or gallery is contained in [8]. 

The effective characteristics of fissured or fractured-porous rocks can be determined 
experimentally with the aid of investigations of the corresponding core samples [9], from the 
curves of pressure recovery in the vicinity of boreholes [i0], from the characteristics of 
the process of pumpting finite amounts of liquid into boreholes [ii], by observing the pro- 
ductivity of boreholes [12], with the aid of different complex investigations of permeation 
[13, 14], and also by seismic and geophysical methods [15]. However, regardless of some at- 
tempts in the literature at a theoretical generalization (see, e.g., [15-18]), an acceptable 
theory of the structural and mechanical properties of the media under investigation does not 
exist so far, and for the correlation of experimental data and the solution of actual prob- 
lems of permeation empirical formulas are usually used in which the dependence of these magni- 
tudes on the pressure in the fissues is taken into account but, as a rule, the effect of the 
state of stress of the medium on them is altogether ignored. Therefore, the suggested power 
formulas [3] and exponential formulas [2, 3, 9, 12] can apply, strictly speaking, only to 
media under conditions of hydrostatic pressure. 

The following formulas are used particularly frequently: 

k = k0 exp [an (p - -  Po)], m = mo exp [a m (p - -  P0)]; ( 1 )  

t h e y  c o r r e s p o n d  t o  t h e  a d d i t i o n a l  a s s u m p t i o n  t h a t  t h e  r o c k  p r e s s u r e  i s  c o n s t a n t ;  h e r e ,  P0 i s  
the characteristic value of the formational pressure p, and the coefficients ak and am are 
usually of the order of 10-8-10 -7 Pa -I. 

Below we investigate fissure porosity and permeability on the basis of the general model 
of [6] for media with plane fissures having smooth walls without protrusions and fractures 
preventing their closure, on the assumption that the medium is elastic but that the stresses 
in it and the pressure of the liquid in the fissures are arbitrary. If the permeability by 
blocks is much smaller than the permeability by fissures, then the obtained results have to 
approximatelycorrect for fissured as well as for fractured-porous materials. 

The opening (minor semiaxis) of a plane ellipsoidal fissure with radius c can be repre- 
sented in the form [6, 19] 

h = A c ( p - -  non) Y ( p - - n o n ) ,  ( 2 )  

where Y(x) is a Heaviside function, and the constant A depends in a known manner on the elas- 
tic properties of the monolithic or porous blocks separated by fissures. In accordance with 
the Boussinesq-Poiseuille law, the hydraulic conductivity of fissures is proportional to h 3, 
and their volume is proportional to h. If the gradient of the mean pressure in the fissures 
is Vp = -EAiei, then the flow of liquid due to the i-th component Vp is proportional to the 
vector Aiha(n • ei) x n [6]. The mean flow is obtained by averaging the fissures by their 
distribution function according to orientations and dimensions. According to the assumption 
the magnitude of c does not depend on p and o, i.e., averaging with respect to c is trivial, 
and it suffices if we confine ourselves to averaging with respect to the vector n, as if all 
the fissures had the same dimensions. If we determine in the ordinary manner the components 
of the permeability tensor through the proportionality factors between the corresponding com- 
ponents of the liquid flow and of the pressure gradient, we obtain, with a view to (2), that 

kij : B S [(n )< ei) • n]j (p - -  non) ~ Y (p --- non) [ (n) dn. 

Analogously, for fissured porosity we have 

m - C ~ (p -- no.) Y (p -- non) [ (n) dn 

(3) 

(4) 
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The coefficients B and C contained in (3) and (4) do not depend on p, o and they can be 

expressed through some reference values of permeability and porosity, and also of the pressure 

in the fissures and the characteristic compressive stress. In the past, in theoretical works, 

the authors used various types of averaging with respect to volume [15-18] instead of averag- 
ing with respect to distribution function f(n) (which, for the sake of determinacy, we regard 
as normalized to unity). 

A simpler situation arises in hydrostatic pressure on a macroscopically homogeneous and 
isotropic medium with stress o or a medium in which all the stresses are oriented in one 
plane and which is subjected to arbitrary compression with o = nan In both cases [6]I 

( p _ _ ~  )3 ,  - - ,  P > ~ .  ( 5 )  k ~ j = k S i ~ ,  k = k  o m = m o  P - - ~  
Po - ~  Po - o 

In the general case of heteroaxial loading and arbitrary distribution of fissures (the 
medium is macroscopically homogeneous but not isotropic), it is natural to take as axes of 
coordinates the principal axes of the stress tensor. Then n = {cos 8, sin 0 cos % sin 0 sin 

~}, where 8 and ~ are the polar and azimuthal angle, respectively, of the spherical system of 
coordinates, 

I I 
a n : -  s in  ~ O, oc, 2 - -  s in  20 cos  % ~,a  - -  s i n  20 s i n  % 

2 2 

o*,2:, --- 1 - -  s in  ~ 0 cos~% O, a3 ---- 1 - -  s in  ~ 0 sin'-' % 

1 
a~,3 = ---- s in  = 0 s in  2qo (~iJ ---- [ ( n x e / )  X n ] j ) ,  

2 

p - -  n ~ n  = p - -  % - -  ( ~ t  - -  o%) c o s  ~ 0 - -  (o'., - -  c%) s i n  ~ 0 c o s "  q~ 

(6) 

and dn = sin OdOd9 in (3) and (4). 

Let us first examine the most important case as regards application, where o I = 02 + r > 
02 = 03 (r = 01 - a 2) and the last relation in (6) is written as follows: 

p - -  n o n  = r (~  - -  cos ~ 0), * = r - ~  (P - -  ~ ) "  ( 7 ) 

Since this magnitude is the argument of the Heaviside function in (3) and (4), its posi- 
tive value determines the region of integration in these relations. If ~ > i (p > a l) or 

< 0 (p < 02) , then all the fissures are open or closed, respectively. When 0 < ~ < i, only 
the fissures are open for which 8" < e < ~ - 0", where the critical value of the angle is 
0* = arc cos ~. 

When o 2 - r < a 2 = o 3 (r = o 2 - oi) , we have instead of (7) 

p - -  n a n  = r ( c o s  ~ 0 - -  , ) ,  , = r -  ~ ( ~  - -  p ) .  ( 8 )  

In this case all the fissures are open or closed when ~ < 0 or , > i, respectively, and 
when 0 < ~ < i, only those fissures are open for which 0 < 8 < e* or ~ - 8* < 9 < ~, where 
8* = arc cos ~-. 

In the general case, when the state of stress of the medium is not axisymmetric, the 

shape of the regions of integration with respect to the variables 0 and ~ in (3) and (4) is 
more complex and can be determined from (6). 

Thus the determination of fissure permeability and fissure porosity within the frame- 
work of the model under examination reduces in essence to the calculation of the integrals in 
(3) and (4) by using relations (6); this can be effected numerically for material with arbit- 

rary distribution of fissures in regard to orientation. For the sake of simplicity we con- 
fine ourselves to the analysis of macroscopically axisymmetric materials; their anisotropy 
is described on the whole by specifying the unit vector I = {cos 8 ~ , sin 8 ~ cos ~o, sin 0 ~ 
sin o}, which determines the direction of the axis of symmetry. Since the directions n 
and -n are equivalent, f(n) may be regarded as an even function of the unit scalar argument 
In. If we expand this function into a series of powers of In and confine ourselves to the 
first two terms of the expansion, we have, with a view to the conditions of normalization, 
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1 [i + 3n (nk)~l, 
f (n) - 4~ (1 + TI) ( 9 )  

Here the coefficient rl acts as "parameter of order" characterizing the degree of anisotropy. 
The distribution function (9) may be regarded as 'a fairly good approximation for describing 
any axisymmetric material. 

In the case ol > o2 = ca calculations using (6) and (7) lead to the following analytic- 
al representations for kij and m: 

k~l = a {J:  + (3n/2) Ida -5 (2J  2 - -  3J~) cos ~ O~ 

k;2 = a {g~ - -  (1/2) S~ q-  (3n/2) [J~ cos ~ 0 ~ -5 (1/4) (3 - -  7 cos ~ O' - -  

- -  2 sin ~ 0 ~ cos:  (p~ Ja]}, k~s = a {dx - -  ( 1/2) Je -}- (3~1/2) [Je cos:  O ~ -~ ( 1/4) (I  - -  5 cos e 0 ~ + 2 sin ~ 0 ~ cos ~ ~p~ da]}, ( I 0 )  

/e~ == -- a 0~t/2) (d~ - -  d~) sin 20~ cOL 

,~;a . . . . . . .  a (3n/2) (1~ .... :~) sin 20 ~ sin qo ~, 

f~ 
k '~ - - - - - - -a (3~ l /8 )d~s in~O~ ~ a =  - -  

2(1 + r t )  B 

m ----- 2 i l  -+- ~) + ~t [l~ + (2J~ - -  3J~) cos �9 0 ~ , m '  = 
C '  

where Ji depends on ~. When 0 < ~ < I, we have 

Yx = 0,92r 7/2, G = 0,92~7/2--0,I0r 9/~, 

J~ = 0,92 ~7/~ __ 0,20 r  + 0.02 ~ / 2 ,  

J ~ = t 3 4 r  J ~ = I , 3 4 r 1 6 2  
(n) 

and when ~ > I, 

�9 1t = 2~ ~ - -  2 r  ~ + 1.20 r - -  0.28, J~ = t .34 r __ 0,80 r + 

-5 0,34 ~0 - -  0.06, J 3 =  1.06 r - -  0,46 r + 0,16 r - -  0,02, 

la  ---- 2 r  - -  0.66, J~ = 1.34 r - -  0.22. 

( 1 2 )  

Thus, in the case under consideration, fissure permeability and fissure porosity depend, 
first, on the magnitude of 8 ~ ~o and n, characterizing the properties of the medium itself 
in the unloaded state and, second, on the parameters r = a I - ~2 and ~ = r-l(p - o 2) character- 
izing the state of stress and the pressure in the fissures. Formulas (i0) become greatly 
simplified for macroscopically isotopic media (D = O) when the crossed components of the perme- 
ability vector vanish. These formulas are simplified, but the permeability tensor has diag- 
onal form even when the axes of symmetry of the anisotropic medium and its state of stress 
coincide (O ~ = 0). 

In the case a I < o 2 = cs, formulas (i0) are, as before, correct for m and the component 
of the tensor k, but the functions Ji they contain have to be replaced by J'i, where in the 
interval 0 < ~ < 1 

J; = J~ -- S~, (13) 

where Ji are determined in (ii), and when ~ < 0, 

J; =--e~, % = 2(r162 + 0 60 r -- 0,14), 

f~  = 2 (0.67 r  0 .40 r + O. I 7 r  0,03), 

Qa =: 2 (0.53 r  r ~ -5 0 . 0 8 • - - 0 . 0 1 ) ,  

Q,, = 2 ( r  ~5 = 2 ( 0 . 6 7 r  

(14) 

The nature of the dependence of the magnitudes Zij = 2kijr -s and n = 2mr -l on various 
parameters for states of axisymmetric stress of macroscopically axisymmetric m~terial, de- 
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F i g .  i .  R e d u c e d  c o e f f i c i e n t s  o f  p e r m e a b i l i t y  w i t h  s t a t e  o f  
axis~etric stress of axis~etric material in the cases 

o z > o 2 = o 3 (a, b) and o z < o 2 = o 3 (c, d) for ~~ 0, q = 
i: 1-4) Z11, s Z3~, -Z!2; a, c) O ~ = 0, 45, 90 ~ (dashed, 
solid, and dot-dash curves, respectively); b, d) ~ = i. 

0,4 

\ '\ \ 
If3 

O 45 ~ 0 ~ 

c I 

-0,4 0 
0,3 

1 2 3  

0 45" O" 

Fig. 2. Reduced porosity of axisymmetric material with state 

ofaxisymmetric stress in the cases a I > 02 = o 3 (a, b) and 

01 < 02 = 03 (c, d) for ~~ = 0; a, c) q = i, e ~ = 0 (i), 45 ~ 
(2), 90 ~ (3); b, d) ~ = i, q = 0 (I), i (2), ~ (3). 

-,2,5 

Fig. 3. 

1.2 

45" 0 ~ 

�84184 

45" G" 

Reduced coefficients of permeability (a) and poros- 

ity (b) for materials with uniformly oriented fissures with 

state of nonaxisymmetric stress; 1-4) ~11, ~22, ~3, ~!2; 
(02 -- o3)(o I -- 03) -I = 0.3 (solid) and 0.6 (dashed curves); 
~0 = O, @ = 1.2. 

scribed by the distribution (9), is shown in Figs. i and 2 (all the magnitudes in the figures 
are dimensionless). Particularly important is the very strong dependence of these magnitudes 
on the parameter 0 characterizing (in relative units) the pressure of the liquid in the fis- 
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sures. It is not difficult to obtain asymptotically (for large p) from (i0) the cubic de- 
pendences for %ii and the linear dependence for n, all of them corresponding to (5). The 
crossed components %ij (i # j) vanish when n = 0 or 0 ~ = 0, 7/2. 

If the state of stress is not axisymmetric, then numerical methods are needed for inte- 
gration in (3) and (4), even in the analysis of isotropic and simple axisymmetric materials. 
An exception are materials in which all cracks are oriented alike (i.e., lie in one plane); 
this is quite characteristic of sedimentary rocks, where instead of (9) we have 

[ (n) = 6 (n  - -  no) , no = {cos 0 o, s i n  0 o cos q~o, s in  O o s in  % } .  ( 1 5 )  

In this case, putting o I > o 2 > o s for the sake of determinacy, we have 

kij  = ~Li(Oo, q)o)603(00, fPO), m = co(Oo, % ) ,  (16) 

~o = p - -  an - -  (01 - -  ~ )  cos  2 0 o - -  (0 2 - -  o3) s i n  ~ 0 o cos  2 % ,  

where aij are determined in (6) in the region of positiveness of the function ~; when ~ < 0, 
all the fissures are closed, kij = 0, m = 0. The dependences (16) are presented in Fig. 3. 

For o I > 02 > o~ and f(n) from (9), a cycle of numerical calculations of the porosity 
and permeability coefficients of fissured materials was carried out. These data are too cum- 
bersome to present here but we will show that the nature of their dependence on the examined 
parameters is the same as in Figs. 1-3. Investigation of the properties of anisotropic non- 
axisymmetric materials on the basis of the suggested theory also requires in most situations 
numerical integration in (3), (4). 

A comparison of the obtained results with experimental data is made difficult by the fact 
that, as a rule, experimental works do not contain information on the distribution of fis- 
sures in respect of orientation in the investigated samples, and the data obtained in labor- 
atory experiments are very often of a qualitative nature only; this was admitted, e.g., in [13]. 
The above comparison is objectively somewhat superficial, and at present it makes sense to 
compare the theoretical formulas with the empirical ones, regarding the latter as some general- 
ization of variegated experiments, but not directly with the data of original experiments. 
Thus, confining ourselves to the analysis of macroscopically isotropic materials in the state 
of hydrostatic compression, we compare the theoretical formula for permeability from (5) with 
the empirical formula in (i), representing them in dimensionless form: 

k _-- exp  ( - -  =x),  ~z = akpo, x = Po - - ~ P ,  (17)  
ko Po 

k __ 1 - -  , O ~ x ~ F ; - - - - l - -  < 1 .  
ko Po ( 1 8 )  

In the literature it is admitted that the coefficient ak (and consequently also =) is 
bound to depend on the compressive stress o, but the form of this dependence is not being de- 
termined. It is therefore expedient to compare the families of curves (17) and (18), regard- 
ing ~ and ~ as variable parameters (see Fig. 4). It can be seen from the figure that with 
sufficiently large ~ (in particular those corresponding to anomalously high formational pres- 
sures [3], when fissure permeability is in fact large) it becomes possible that there is 
fairly good agreement between the curve (17) and any of the curves (18) corresponding to a 
certain value of ~ depending on ~. To a certain extent this circumstance explains theoret- 
ically the efficiency of the empirical exponential formula in (i). Comparison of the curves 
(17) and (18) also makes it possible to determine the approximate dependence of the empiri- 
cal coefficient~ on the stress o. 

With random isotropic distribution of fissures, fissued material is equivalent to the 
radially homogeneous sandstone dealt with in [20]. In this case, in accordance with (5), 
the theoretical coefficient of compressibility of the pores 

a,~ = (p  - -  a ) - ~  ( 19 ) 

1342 



0 o,4 

Fig. 4. Comparison of the theoretical form- 
ula (17) (dashed) and the empirical formula 
(18) (solid curves) for scalar permeability: 

= 0.2 (i), 0.4 (2), 0.6 (3), 0.8 (4); ~ = 
5 ( 5 ) ,  1 ( 6 ) .  

differs considerably from am ~ p-l/3 for the models of elastic porous and fissured rocks 
discussed in [12]. However, a number of experiments lead directly in particular to the 
form (19) of the coefficient of compressibility [12]; this is in contradiction to the pre- 
sented models, but it confirms the theory of [12]. We note that the magnitude of the coeffi- 
cient of compressibility is very important in approximate evaluations of oil reserves by the 
method of the elastic material balance on the basis of data of exploratory tests. Without 
going into details, we will show that when am from (19) is used in the corresponding calcu- 
lations, it leads to results which differ by a multiple from the results obtained on the 
basis of other models of fissured reservoirs in [12]. 

Some indirect testimony to the correctness of the developed theory could be quoted. It 
Js known, e.g., that the axial permeability of cylindrical samples subjected to axial pres- 
sure o I decreases with increasing lateral pressure 02 [12, 16]. For the sake of simplicity 
we take isotropic materials (q = 0), for the coefficient of axial permeability we obtain 
from (I0) that kll = 0.5Jir s, and then for 01 ~ p > o 2 = 03 we have 

dkn -- r~ , ( - - 3 d ~  p - ~ I  d J2 I < 0 .  
d~  2 \ r d~ I 

It is not difficult to show that the sign of this derivative is retained also for p > 
ol, as well as for n ~ 0 in (9), which corresponds to anisotropic axisymmetric materials. 

In conclusion, we emphasize that the results obtained above make it possible to state 
and solve various problems of permeation in fissured reservoirs. In fractured-porous media 
there may also be considerable permeability through porous blocks which is also bound to 
depend on the degree of opening of the fissures, i.e., ~ on the pressure in the fissures and 
the state of stress of the medium. Determination of block permeability is an independent 
problem that has not yet been Solved. 

NOTATION 

A, B, C, constant coefficients; ak, am, coefficients in ~i); c, radius of fissures; 
f(n), distribution function of cracks in respect to orientation; el, unit vector; h, fissure 
opening; Ji, J'i, functions determined in (11)-(14); kij, k'ij, ~ij, true and reduced perme- 
ability tensors, respectively; m, m', n, porosity and its reduced values; n, unit vector of 
the normal to the plane of the fissure; p, pressure in the fissures; r = Ioi - o21; x, dimen- 
sionless pressure introduced into (17); ~, $, coefficients in (17), (18); {~ij}, tensor in- 
troduced in (6); N, parameter of order; 9, ~, angular coordinates; ~, variable determined in 
(7) or (8); ~i, functions determined in (14); m, function from (16). 
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ISOTHERMAL FLUID FLOW IN A PACKING OF SPHERES 

V. I. Volkov UDC 532.436 

Simultaneous measurements of the velocity profiles inside and behind a packing 
made of spheres are used to establish the pattern of isothermal flow of a fluid 
inside the packing. 

Several investigations have found that the velocity field after a granular bed may be 
quite different from the velocity field inside the bed [i, 2]. We therefore made use of 
studies which determined the fluid velocity inside the bed. Analysis of these works showed 
that all of the contact methods of measurement give a planar or nearly planar velocity pro- 
file if the size of the transducer is comparable to or greater than the size of a granule of 
the porous medium [2-4]. 

It has been established by all of the noncontact and diffusive methods of determining 
velocity that the fluid velocity is significantly highernear the wall than in the center 
of the packing [5-7]. This discrepancy in the findings is evidently due to the fact that in 
the measurement of velocity from the heat and mass transfer from a transducer comparable in 
size to the granule size in the bed, one is actually determining the hydrodynamic situation 
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